
Structural Jacobian accumulation with unit edges

Andrew Lyons

Computation Institute, The University of Chicago

Mathematics and Computer Science Division, Argonne National Laboratory

lyonsam@gmail.com

compiled February 11, 2009 from draft version hg:ad8dfadd421d:50

Abstract

We consider the complexity of evaluating Jacobian matrices using a minimum number of �oating

point operations. We show that

We focus on the implications of the observation that linear operations result in partial derivatives

that are unit values. On the edges in the graph that

The new variant of the optimal Jacobian accumulation problem presented here, which takes into

account edges in the computational graph that have unit labels, occupies a middle ground between

a very general problem that is known to be NP-hard and a subproblem whose complexity has been

unknown for over two decades. We show that minimizing additions, multiplications, and total �oating-

point operations for this new variant are allNP-hard when using operations in {+, ∗}, even when subject

to signi�cant restrictions. We also present an example where the optimal accumulation over {+,−, ∗}
involves fewer multiplications than when subtraction is not allowed, providing the �rst evidence of the

utility of subtraction in the accumulation of Jacobian matrices.

In fact, we �nd that the accumulation of Jacobian matrices forms a class of problems that includes

many fundamental type of computations from linear algebra, including matrix products and in particular

bilinear forms. We draw from results in the area of algebraic complexity theory to . . .

We demonstrate that our results also apply to the evaluation of collections of Jacobian-vector and

vector-Jacobian products.

1 Introduction

In Jacobian accumulation we are given a directed acyclic graph G = (V,E), called a computational graph,
which represents a particular (�xed) straight-line program that evaluates some vector function F : Rn → Rm.
The vertices in V represent the variables used in the evaluation of F ; the edges (u, v) ∈ E represent the direct
dependencies among the variables and are labeled with the corresponding partial derivative, or local partial,
of v with respect to u. Using the chain rule from derivative calculus, we may derive from the structure of
G a collection of expressions over the edge labels, where each expression yields the value of one entry in the
Jacobian matrix J ≡ F ′(x). We refer to the process of evaluating the entries of J via these expressions over
the local partials as Jacobian accumulation, and our goal is to accumulate J with a minimum number of
�oating-point operations. The nature of the chain rule, and in particular the properties of the commutative
ring (R,+, ∗), result in an exponential number of straight-line programs (or equivalently algebraic circuits)
that accumulate J.

Jacobian accumulation arises in the �eld of automatic (or algorithmic) di�erentiation (AD) [GW08], which
is a collection of techniques for obtaining derivatives for numerical programs. The process of determining
an accumulation procedure is performed at compile time in the context of AD compilers for imperative
languages. The problems presented here have direct applications and fall under the category of combinatorial
scienti�c computing. AD tools such as Tapenade1 and OpenAD2 are used regularly to add derivatives to
high-performance numerical codes such as the MIT General Circulation Model3.

1http://www-sop.inria.fr/tropics/tapenade.html
2http://www.mcs.anl.gov/OpenAD/
3http://mitgcm.org/

1

mailto:lyonsam@gmail.com

This paper is organized as follows. In the remainder of this section we provide additional motivation,
including an example, and give formal de�nitions for the problems we will discuss. In Section 3 we leverage
a connection with the problem of optimal evaluation of bilinear forms to show that allowing subtractions in
the accumulation process can lead to a reduction in the number of multiplications performed. In Section 2
we present complexity results for minimizing additions, subtractions, and total �oating point operations for
SOJA1.

1.1 Jacobian matrices and Baur's formula

We consider vector functions of the form y = F (x), F : Rn → Rm that map a vector x = (xi)i=1,...,n of
independent variables to a vector y = (yi)i=1,...,m of dependent variables. We assume that the way in which
F is evaluated is �xed as a particular straight-line program, and we are given a directed acyclic graph (dag)
G that is a computational graph for F. As noted above, the edges (u, v) = e ∈ E are labeled with the local
partials ce ≡ ∂v

∂u .
Baur's formula [BS83] yields the entries of the Jacobian as

Jj,i ≡
∂yj

∂xi
=

∑
P∈P[xi→yj]

∏
e∈P

ce ,

where P[xi→yj] denotes the set of all paths from xi to yj in G.

Example 1. Consider the vector function y = F (x) : R2 → R4 de�ned by y1 = (x1 ∗x2)/(x1 ∗x2 +10), y2 =√
x1 ∗ x2 + 10, y3 = sin(x1 ∗ x2 + 10), y4 = cos(x1 ∗ x2 + 10). The corresponding computational graph G is

shown in Figure 1(b). Note that the values of the local partials may be trivially determined from the values

that the variables in G assume during a particular evaluation of F : a = ∂(x1∗x2)
∂x1

= x2, b = ∂(x1∗x2)
∂x2

= x1,
and so on. As such, we assume that an AD tool will automatically supply expressions for evaluating the
local partials. Applying Baur's formula results in the following expressions for the entries of J : J1,1 =
ad+ ace, J1,2 = bd+ bce, J2,1 = acf, J2,2 = bcf, J3,1 = acg, J3,2 = bcg, J4,1 = ach, J4,2 = bch.

v1 = x1 ∗ x2

v2 = v1 + 10
y1 = v1/v2

y2 =
√
v2

y3 = sin (v2)
y4 = cos (v2)

x1 x2

v1

v2

y1 y2 y3 y4

a b

cd

e
f g h t1 = c ∗ e; t2 = d+ t1;

J1,1 = a ∗ t2; J1,2 = b ∗ t2;
t3 = a ∗ c; t4 = b ∗ c;

J2,1 = t3 ∗ f ; J2,2 = t4 ∗ f ;
J3,1 = t3 ∗ g; J3,2 = t4 ∗ g;
J4,1 = t3 ∗ h; J4,2 = t4 ∗ h;

(a) (b) (c)

Figure 1: Straight-line program for F (a), computational graph G (b), and a straight-line program that
accumulates J (c) for Example 1.

Here and henceforth, unit edges are shown as red.

1.2 Optimal Jacobian accumulation

For many years researchers believed that the following problem (here stated as a decision problem), which
addresses Jacobian accumulation through the purely structural aspects of G, appropriately captures the
problem of accumulating J at minimum cost.

Problem 1. Structural Optimal Jacobian Accumulation (SOJA)
Instance: Dag G = (V,E), where each e ∈ E is labeled with some ce such that all ce are unique real variables
that are algebraically independent, positive integer K.
Question: Is there a straight-line program using operations in {+, ∗} of length K or less that computes every
entry in J such that every operand is either some ce or the result of a previous operation?

2

In practice, SOJA was �rst approached by means of a vertex elimination method [Yos87] similar to that
used in Gaussian elimination on sparse matrices. Naumann introduced the progressively more general (and
more powerful) techniques of edge [Nau99] and then face [Nau04] elimination. It is conjectured that for any
instance of SOJA there is a face elimination sequence that accumulates the Jacobian at a minimum cost.
However, these heuristic techniques do not directly apply (as currently de�ned) to the problems listed in the
remainder of this section.

Recent work on the subject has highlighted the possibility of algebraic dependences among the local
partials that label the edges of G. For example, the computational graph that corresponds to a matrix-vector
product will have a great number of edges that are labeled with identical local partials. This realization has
motivated the following more general problem.

Problem 2. Optimal Jacobian Accumulation (OJA)
Instance: Dag G = (V,E), where each e ∈ E is labeled with some ce that represents a real variable, positive
integer K.
Question: Is there a straight-line program using operations in {+, ∗} of length K or less that computes every
entry in J such that every operand is either some ce or the result of a previous operation?

Theorem 1 ([Nau08]). OJA is NP-hard.

The proof of this theorem by Naumann uses a reduction from the Ensemble Computation problem
[GJ79] and relies heavily on the fact that there may be algebraic dependences among the edge labels. The
result of this observation is that the complexity arises not strictly from the structure of the graph. In fact,
the instances of OJA that are constructed by the proof consist of multiple disconnected components, each
of which is a simple path. All entries of the resulting Jacobian lie on the diagonal.

All of the problems in this section have analogues where the goal is to minimize the number of additions
or multiplications in the corresponding program. We denote these variants by a superscript + or ∗, respec-
tively. It may be argued that minimizing additions is of purely academic interest. However, minimizing
multiplications has a practical signi�cance, as they are signi�cantly more costly than additions, and some
computer architectures allow for a used multiply-add to be performed in a single clock cycle. Because the
instances of OJA constructed in the proof of Theorem 1 result in expressions that have no additions, we
immediately have the following result.

Corollary 1 ([Nau08]). OJA∗ is NP-hard.

Consider again the dag from Example 1, and note that v2 = v1 + 10. This implies that the edge label c
will in fact always be equal to one, as c ≡ ∂v2

∂v1
= 1. Some or all of the edges in G may have such positive unit

labels. With this as our motivation, we introduce the following new variant of Jacobian accumulation as a
decision problem.

Problem 3. Structural OJA with Unit Edges (SOJA1)
Instance: Dag G = (V,E), where each e ∈ E is labeled with either a unique real variable ce or a positive or
negative unit label +/− 1 such that all ce are algebraically independent, positive integer K.
Question: Is there a straight-line program using operations in {+, ∗} of length K or less that computes every
entry in J such that every operand is either the label on some e ∈ E or the result of a previous operation?

As the de�nition of OJA does not have a speci�c provision for unit edges, we may similarly de�ne
Optimal Jacobian Accumulation with Unit Edges (OJA1) as a superproblem of OJA where edges
may have positive or negative unit labels +/− 1. Theorem 1 and Corollary 1 apply immediately to OJA1.
Note that SOJA is a subproblem of SOJA1, which in turn is a subproblem of OJA1 (in other words, we
have that SOJA ⊂ SOJA1 ⊂ OJA1). Our study of SOJA1 is motivated by the fact that unit edges in the
computational graph can be identi�ed trivially, whereas recognizing algebraic dependences among the edge
labels requires compiler analysis that is not performed by current AD tools.

The complexity results for SOJA1 presented here are interesting for two reasons. First, they capture
the complexity inherent in the structure of G, which will be necessary for any future complexity result for
SOJA. Second, they show that SOJA1 is NP-hard even under signi�cant restrictions, thus taking a large
chunk out of the problem space of Jacobian accumulation where we may �nd tractability. In particular, we
show that SOJA1 isNP-hard even when there is a bound of two on the indegree of all v ∈ V. This restriction

3

is motivated by the practical observation that AD compilers generate computational graphs from expression
trees, which are often binary.

While it is clear that the number of additions, multiplications, or total operations in a straight-line
Jacobian accumulation program can be veri�ed in polynomial time, we must also verify that the program be
algebraically equivalent to an evaluation of Baur's formula for the input dag G. Currently, no polynomial
time procedure is known that can satisfy the latter requirement. Therefore, the problems stated here are
not known to be in NP.

Though we speak of generating straight-line programs, we will occasionally represent these programs by
expressions for the sake of brevity; the implied straight-line program should be derivable in a nonambiguous
manner.

Note that the de�nitions of these problems restrict the arithmetic operations used in the accumulation
procedure to those in {+, ∗}. In Section 3 we show that there are cases where the restriction to such monotone
computations is restriction is not justi�ed.

Key observations:

Observation 1. • We have a multiplicative identity (1)

• We have additive inverses (both a and −a)

We will use Observation 1 to show that there are cases where the optimal nonmonotone accumulation
circuit has fewer multiplications than the optimal monotone circuit.

Proposition 1. For any binlinear form aTRb there exists a dag G = (V,E) with unique minimal vertex x
and unique minimal vertex y such that each edge e ∈ E is labeled with some unique variable. Furthermore,
we have that ∑

P∈P[xi→yj]

∏
e∈P

c = aTRb.

Proposition 2. For any binlinear form aTRb there exists a dag G = (V,E) with unique minimal vertex x
and unique minimal vertex y such that each edge e ∈ E is labeled with some unique variable. Furthermore,
we have that ∑

P∈P[xi→yj]

∏
e∈P

c = aTRb.

In this section, we demonstrate that some fundamental problems from algebraic complexity can be
modeled . . .We begin by modeling the evaluation of bilinear forms as a Jacobian accumulation problem.
This construction will be used later on to obtain complexity results for SOJA1.

Let a = (a1, a2, . . . , ak)T and b = (b1, b2, . . . , b`)T be two vectors of indeterminates.
A formal de�nition of the class of functions we obtain is beyond the scope of this paper.

2 Complexity results

In this section we show that SOJA1, SOJA
+
1 , and SOJA∗1 are all NP-hard and remain so even under

signi�cant restrictions.

The complexity of SOJA+
1 and SOJA1 We will reduce Ensemble Computation to SOJA1. An

instance of Ensemble Computation [GJ79] consists of a �nite set S, a collection C = {C1, C2, . . . , Cr}
of distinct subsets of S, and a positive integer K. It is NP-hard to decide whether the sets in C can be
constructed from the elements of S using K or fewer disjoint union operations.

Example 2. Consider the instance S = {a, b, c, d}, C = {{a, b}, {a, c, d}, {b, c, d}},K = 4 of Ensemble
Computation. The answer to this instance is YES, as all sets in C are yielded by the following collection
of four union operations. T = {c} ∪ {d}; C1 = {a} ∪ {b}; C2 = {a} ∪ T ; C3 = {b} ∪ T. Figure 2(a) shows
the corresponding instance of SOJA1 that would be constructed as described in the proof of Lemma 1.

Lemma 1. SOJA+
1 is NP-hard.

4

x

y1 y2 y3

a′ b′ c′ d′

a b c d

x

y1 y2 y3

a′ b′ c′ d′

a b c d

(a) (b)

Figure 2: Instances of SOJA1 that correspond to the instance of Ensemble Computation given in Exam-
ple 2: all paths length ≤ 2 (a); all vertices indegree ≤ 2 and all paths length ≤ 3 (b).

Proof. Let S,C,K be an instance of Ensemble Computation. We construct an instance of SOJA1 as
follows, where Figure 2(a) depicts the construction for Example 2. Create a single independent vertex x, and
for every s ∈ S, create a vertex s′ and an edge from x to s′ labeled s. For every set Ci create a dependent
vertex yi, and for all s ∈ Ci create a unit edge from the corresponding vertex to yi. We claim that the given
instance of Ensemble Computation is a YES instance if and only if there is some straight-line program
of length ≤ K that evaluates every nonzero entry of J.

Suppose all of the sets Ci can be constructed by some sequence of K or fewer disjoint union operations.
We obtain from such a sequence a straight-line program for evaluating the entries of J by substituting the
addition operation for disjoint union. There is a one-to-one correspondence between sets Ci and the nonzero
Jacobian entries Ji, and it follows from Baur's formula that the disjoint unions that construct Ci will compute
Ji when replaced by additions.

Suppose conversely that there is some straight-line program of length ≤ K that computes all nonzero
entries of J. It follows from the nature of the constructed SOJA1 instance G and the fact that we are
restricted to operations in {+, ∗} that such a program will involve additions exclusively. Furthermore, no
operation in the program can produce a result that has more than one contribution from a particular nonunit
edge label ce, as no such label contributes more than once to any Jacobian entry and we are prohibited from
using subtraction. We may therefore conclude that replacing the additions in the straight-line program with
union operations will result in a sequence of ≤ K disjoint unions that constructs the sets in C.

We complete the proof by noting that the reduction described is indeed polynomial.

The above construction will generate a graph with a single independent vertex, resulting in a Jacobian that
represents a tangent. Obviously, a symmetric construction with a single dependent vertex and independent
vertices for all Ci ∈ C would yield the same result for gradients.

Theorem 2. SOJA1 is NP-hard.

Proof. The proof follows immediately from the fact that the instance of SOJA1 that we construct as described
in the proof of Lemma 1 involves additions exclusively.

Note that the reduction described in the proof of Lemma 1 can result in vertices in G with O(|V |)
inedges. AD compilers often generate computational graphs with unary and binary operations exclusively,
which results in a bound of two on the indegree of all v ∈ V.

Corollary 2. SOJA1 and SOJA+
1 remain NP-hard under each of the following restrictions.

(i) G represents a tangent or gradient and all paths in G have length ≤ 2.

(ii) G represents a tangent or gradient, all vertices in G have indegree ≤ 2, and all paths in G have length
≤ 3.

Proof. (i) The proof follows directly from the proof of Theorem 1.
(ii) Since Ensemble Computation remains NP-hard even when all sets Ci satisfy |Ci| ≤ 3, we may

assume that all yi in our constructed instance G have indegree ≤ 3. We create a new graph G′ as follows,

5

where Figure 2(b) depicts the construction for Example 2. Let yi be any such vertex with indegree 3, and
let p1, p2, p3 be the predecessors of yi. Remove the unit edges (p1, yi) and (p2, yi), create a new vertex y′i,
and create new unit edges (p1, y

′
i), (p2, y

′
i), and (y′i, yi). It is clear that G′ satis�es the conditions of (ii) and

that the set of Jacobian expressions for G′ yielded by Baur's formula are the same as those for G. Observe
that no more than |C| extra vertices are created, and thus the given transformation is polynomial. This
completes the proof.

Figure 2(b) shows the instance of SOJA1 that corresponds to the instance of Ensemble Computation
discussed in Example 2.

The complexity of SOJA∗
1. We will use the following problem in the reduction presented in this

section.

Problem 4. Partition into Complete Bipartite Subgraphs

Instance: Bipartite graph G = (A,B,E), positive integer K.
Question: Can the edges of G be partitioned into k ≤ K disjoint sets C1, C2, . . . , Ck such that each Ci is a
complete bipartite graph?

Theorem 3 ([GJ80]). Partition into Complete Bipartite Subgraphs is NP-complete.

Theorem 4. SOJA∗1 is NP-hard.

Proof. We reduce Partition into Complete Bipartite Subgraphs to SOJA∗1. Given an instance
GB = (A,B,EB),K of Partition into Complete Bipartite Subgraphs. Figure 3(b) depicts the
following process for constructing an instance of SOJA∗1. Orient every edge {ai, bj} ∈ EB from ai to bj ,
and give it the unit label 1. Add a new independent vertex x and a new dependent vertex y, then add edges
labeled αi from x to ai for all ai ∈ A and edges labeled βi from bi to y for all bi ∈ B. The resulting dag
G = (A ∪ B ∪ x ∪ y,EB ∪ {(x, ai) | ai ∈ A} ∪ {(bi, y) | bi ∈ B}) will look something like the dag shown
in Figure 3(b). We will show that the edges of GB can be partitioned into K or fewer complete bipartite
graphs (henceforth bicliques) if and only if the scalar Jacobian J = (∂y/∂x) can be accumulated over {+, ∗}
using K or fewer multiplications.

Suppose some family of sets C = {C1, . . . , Ck} partitions the edges of GB into k ≤ K bicliques. We
construct a Jacobian accumulation procedure using k multiplications as follows. Observe that each Ci

comprises some Ai ⊆ A and some Bi ⊆ B and corresponds to some collection of paths in G. For each Ci, we
�rst perform the necessary addition operations to compute the variables

zAi =
∑

aj∈Ai

αj , zBi =
∑

bj∈Bi

βj

followed by the multiplication zi = zAi∗zBi . Finally, we add the necessary additions to compute zJ =
∑

Ci
zi.

Claim. zJ , computed as above, will yield the correct value for the Jacobian J.

Proof of claim. Let P k
j ∈ P[x→y] denote the unique path that passes through aj and bk. Observe that there

is a one-to-one correspondence between unit edges (aj , bk) and the paths P k
j ∈ P[x→y]. It follows that the

sets Ci partition P[x→y], and we thus have that

zJ =
∑

Ci∈C

 ∑
aj∈Ai

αj ∗
∑

bk∈Bi

βk

 =
∑

P k
j ∈P[x→y]

(αj ∗ βk) =
∑

P∈P[x→y]

∏
e∈P

ce,

which completes the proof of the claim.

Suppose conversely that J can be computed by a straight-line program with operations in {+, ∗} that
uses K multiplications, and let zi = zAi

∗ zBi
be some statement in the program. Because no two distinct

aj , ak ∈ A or bj , bk ∈ B occur on the same path and divisions aren't allowed, both zAi
and zBi

must contain
only contributions from inedges to vertices in Ai ⊆ A and outedges of vertices in Bi ⊆ B, respectively, and

6

be constructed from addition operations exclusively. The subgraph Ci of GB induced by Ai, Bi must be a
biclique, as zi would otherwise contain a contribution of the product of the labels on two edges that do not
occur on a common path. Such a contribution cannot be negated, as we are restricted to operations in {+, ∗}.
Thus zi can contribute to the Jacobian only if Ai, Bi induce a biclique. Let zi = zAi

∗ zBi
, zj = zAj

∗ zBj

be two distinct statements in the program. If both zi and zj contribute to the Jacobian, there can be no
pair of vertices aq, br such that aq ∈ Ai, Aj and br ∈ Bi, Bj , as this would result in two contributions of the
product αqβr to the Jacobian, which cannot be negated by a subtraction or division. Because an edge in EB

corresponds to some path in G that contributes a product to the Jacobian, every such edge must be covered
by some multiplication in the accumulation program. Therefore, we may conclude that the multiplications
in the program correspond to a collection of K disjoint bicliques in GB and that every edge in EB is included
in exactly one biclique, which completes our demonstration of a polynomial reduction from Partition into

Complete Bipartite Subgraphs to SOJA1.

Corollary 3. SOJA∗1 remains NP-hard under each of the following restrictions.

(i) G represents a scalar Jacobian and all paths in G have length ≤ 3.

(ii) G represents a scalar Jacobian and all vertices in G have indegree ≤ 2.

Proof. (i) This follows directly from the proof of Theorem 4.
(ii) Because of the nature of the construction described in the proof of Theorem 4, the only vertices in

the resulting instance of SOJA1 that can have indegree > 2 are those in B and y. Figure 3(c) depicts the
following modi�cation of our construction. If |B| > 2, replace the inedges of y with a binary tree rooted
at y that consists of |B| − 1 dummy vertices, the outedges of which are all unit labeled. The edges labeled
β1, . . . , β|B| that emanate from the vertices in B should now point to the minimal vertices in the new tree.

We handle the vertices in B in a similar manner. Let b be any vertex in B with indegree > 2, and let
Ab ⊆ A be the set of predecessors of b. Create a binary tree of |Ab| − 1 dummy vertices rooted at b that
consists entirely of unit labeled edges. The leaves of the tree will be those vertices in Ab. Applying this
process for each b ∈ B results in the creation of O(|B||A|) new vertices.

The process described above clearly maintains the property that the reduction from Partition into

Complete Bipartite Subgraphs is polynomial. Furthermore, the graph G′ that results from the above
transformations satis�es the conditions of (ii) and the set of Jacobian expression for G′ yielded by Baur's
formula is the same as that for G.

Example 3. The instance of SOJA1 shown in Figure 3(a) would result from the instance of Partition
into Complete Bipartite Subgraphs represented by the sets A,B of intermediate vertices. Figure 3(b)
shows an instance where the indegree of each vertex is ≤ 2; it is equivalent to Figure 3(a) with respect to the
expression obtained from Baur's formula. Accumulating J as (α1 +α2)(β1 + β3) + (α1 +α3 +α4)β2 + (α2 +
α3 +α4)β4 carries a cost of three multiplications, which is the minimum for this example. This corresponds
to optimally partitioning the underlying bipartite graph.

Minimizing Additions with Multiplications Fixed.

Theorem 5. Given a particular set of multiplications to perform (as above) and a positive integer K, it
is NP-complete to determine whether the values used as operands for the multiplications can be computed
using K or fewer additions.

Proof. The operands for the multiplications comprise two instances of Ensemble Computation. . . .

For example, the optimal evaluation of the graph in Example 3 with respect to multiplications results in
the following instances.

1. S = {α1, α2, α3, α4}, C = {{α1, α2}, {α1, α3, α4}, {α2, α3, α4}}

2. S = {β1, β2, β3, β4}, C = {{β1, β3}, {β2}, {β4}}

Note that the �rst instance is identical to the instance of Ensemble Computation in Example 2.

7

a1 a2 a3 a4

b1 b2 b3 b4

x

y

a1 a2 a3 a4

b1 b2 b3 b4

α1 α2 α3 α4

β1 β2 β3 β4

x

y

a1 a2 a3 a4

b1 b2 b3 b4

α1 α2 α3 α4

β1 β2 β3 β4

(a) (b) (c)

Figure 3: Instance of Partition into Complete Bipartite Subgraphs (a) and corresponding instances
of SOJA1 from Example 3: scalar, all paths length ≤ 3 (b); scalar, all vertices have indegree ≤ 2 (c).

3 The utility of subtraction

Note that the problems de�ned in Section 1.2 restrict the arithmetic operations used in the accumulation
procedure to those in {+, ∗}. This restriction arose historically from the observation that Baur's formula
involves additions and multiplications exclusively. In this section, we show that there are cases where this
restriction is not justi�ed.

Gonzalez and JáJá [GJ80] considered the optimal evaluation of bilinear forms B = αTRβ, where α =
(α1, . . . , αp)T , β = (β1, . . . , βq)T , and R is a p× q matrix whose elements are all in {0, 1}. As the following
example demonstrates, any bilinear form B = αTRβ can be expressed as an instance of SOJA1 such that
accumulating the (scalar) Jacobian J yields the value of B.

The expression for the Jacobian yielded by Baur's formula for the type of computational graph constructed
by the proof of Theorem 4 can be expressed as the bilinear form αTRβ.

Example 4. The following bilinear form appears in [GJ80], where it is shown that B can be computed with
only six multiplications using operations in {+,−, ∗}, whereas seven multiplications are required when using
operations in {+, ∗}. Consider the graph shown in Figure 3(a).

Baur's formula yields the following expression for J , which makes it equivalent to an example in [GJ80]
of a bilinear form of the above type.

J = α1β4 + α1β5 + α2β4 + α2β5 + α3β6 + α3β7 + α3β8 + α4β1 + α4β2

+ α4β4 + α5β3 + α5β5 + α6β1 + α6β6 + α7β2 + α7β7 + α8β3 + α8β8

= [α1 α2 α3 α4 α5 α6 α7 α8]







β1

β2

β3

β4

β5

β6

β7

β8


Consider the graph shown in Figure 3, and note that Baur's formula yields the identical expression for J.

Thus, because the expressions for B and J are identical, we may conclude that accumulating J requires seven
multiplications when restricted to operations in {+, ∗}. In particular, J may be computed using operations
in {+,−, ∗} as

J = (α1 + α2 + α3)(β1 + β2 + β4) + (α3 + α6)(β1 + β6) + (α1 + α2 + α5)(β3 + β5)
+ (α3 + α7)(β2 + β7) + (α3 + α8)(β3 + β8)−(α1 + α2 + α3)(β1 + β2 + β3) .

8

which requires only six multiplications.

a1 a2 a3 a4 a5 a6 a7 a8

b1 b2 b3 b4 b5 b6 b7 b8

x

y

α1 α2 α3 α4 α5 α6 α7 α8

β1 β2 β3 β4 β5 β6 β7 β8

a11 a12 a21 a22

b11 b21 b12 b22

(a) (b)

Figure 4: The accumulation of F ′(x) is cheaper when subtractions are allowed in the accumulation process.
In (a). . . In (b), a computational graph whose accumulation procedure represents the product of two 2 × 2
matrices. Strassen's algorithm demonstrates that **** admits an evaluation using only seven multiplications
when subtraction is allowed.

Example 5 (Strassen's algorithm). Strassen's algorithm [Str69] computes the product of two 2×2 matrices
using only seven multiplications (whereas the niave algorithm uses eight multiplications).

J =
[
a11 a12

a21 a22

] [
b11 b12
b21 b22

]
=

[
a11b11 + a12b21 a11b11 + a12b21
a11b11 + a12b21 a11b11 + a12b21

]
Both examples involve cases where commutativity can't help us []. But in our case, we aren't concerned

with applying the algorithm recursively, so we could take advantage of the However, it has been shown that
exploiting commutativity leads to only linear speedup over algorithms which do not [].

4 Conclusions and Open Problems

We have presented a formulation of optimal Jacobian accumulation that attempts to re�ect the capabilities
of modern AD tools as employed in the service of computational science. Problems in this area continue
to provide interesting theoretical challenges. We are still searching for a problem de�nition for Jacobian
accumulation that accurately captures the nature of the problem as it applies to practical applications of
AD, and this search continues to provide interesting theoretical puzzles and connections to a broad array
of areas within theoretical computer science. For example, Baur's formula bears a striking resemblance to
a permanent. The complexity of SOJA, which has been unknown for more than two decades, remains an
elusive and intriguing problem; polynomial time algorithms are known only for rather small classes of dags.
Additionally, because Our main concern is the e�ciency of the accumulation code, we may be willing to
employ exponential time algorithms (at compile time) for solving Jacobian accumulation problems. This
may be especially true for relatively small functions F that are executed in a loop body many times during
the execution of a numerical code. Future research should focus on developing such algorithms to exploit
unit edges, subtractions, and algebraic dependences between edge labels.

Acknowledgements. The author would like to thank Jean Utke and Uwe Naumann for numerous helpful
discussions and suggestions.

9

References

[BS83] Walter Baur and Volker Strassen. The complexity of partial derivatives. Theoretical Computer
Science, 22:317�330, 1983.

[GJ79] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of
NP�Completeness. Freeman, San Francisco, 1979.

[GJ80] Teo�lo F. Gonzalez and Joseph JáJá. On the complexity of computing bilinear forms with {0, 1}
constants. J. Comput. Syst. Sci., 20(1):77�95, 1980.

[GW08] Andreas Griewank and Andrea Walther. Evaluating Derivatives: Principles and Techniques of Algo-
rithmic Di�erentiation. Number 105 in Other Titles in Applied Mathematics. SIAM, Philadelphia,
PA, 2nd edition, 2008.

[Nau99] Uwe Naumann. E�cient Calculation of Jacobian Matrices by Optimized Application of the Chain
Rule to Computational Graphs. PhD thesis, Technical University of Dresden, December 1999.

[Nau04] Uwe Naumann. Optimal accumulation of Jacobian matrices by elimination methods on the dual
computational graph. Mathematical Programming, Ser. A, 99(3):399�421, 2004.

[Nau08] Uwe Naumann. Optimal Jacobian accumulation is NP-complete. Mathematical Programming,
Ser. A, 112(2):427�441, 2008.

[Str69] Volker Strassen. Gaussian elimination is not optimal. Numerische Mathematik, 13(3):354�356, 1969.

[Yos87] Toshinobu Yoshida. Derivation of a computational process for partial derivatives of functions using
transformations of a graph. Transactions of Information Processing Society of Japan, 28(11):1112�
1120, 1987.

p1

a1

b1

q1

p2

a2

b2

q2

p3

a3

b3

q3

p4

a4

b4

q4

p1

a1

b1

q1

p2

a2

b2

q2

p3

a3

b3

q3

p4

a4

b4

q4

(a
1

+
a
2
)(

b 1
+

b 3
)

(a
1

+
a
3

+
a
4
)b

2

(a
2

+
a
3

+
a
4
)b

4

p1

q1

p2

q2

p3

q3

p4

q4

10

	Introduction
	Jacobian matrices and Baur's formula
	Optimal Jacobian accumulation

	Complexity results
	The utility of subtraction
	Conclusions and Open Problems

